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A Data Description

We consider three alternative sets of labor market variables: CES, CPS, and the hours series

constructed by Smets and Wouters (2007). The estimation in the main text uses the first set, which

the literature comparing employment measures in jobless recoveries suggests preference for (see

Bachmann (2012) for a review of the literature). For robustness, we consider in this section also the

two alternative data sets. We apply the following transformation to Total Hours and Employment:

ln
(

x
Pop

)
∗ 100 where Pop is the civilian noninstitutional population (series LNU00000000 of the

BLS). We apply the following transformation to hours per worker: ln(h) ∗ 100.

1. Current Employment Statistics (CES) data.

Total Hours, TH is economy-wide total hours measure of the BLS, taken from

www.bls.gov/lpc/special_requests/us_total_hrs_emp.xlsx.

Employment, L is the economy-wide employment series of the BLS (from same source as total

hours).

Hours, h is average weekly hours calculated as (TH/L)/52.

2. Current Population Survey (CPS) data.

Total Hours, TH is an economy-wide measure constructed as in Ramey (2012). The total hours

series of Cociuba et al. (2012), which is constructed from the BLS’ CPS data for all industries,

combined with total hours of the armed forces, taken from

www.bls.gov/lpc/special_requests/us_total_hrs_emp.xlsx.

Employment, L is an economy-wide employment series constructed from combining CPS em-

ployment for all industries with armed forces employment (from same sources as total hours).

Hours, h is average weekly hours calculated as (TH/L)/52.

3. Smets-Wouters (SW) data.

Hours, h is defined as the index for nonfarm business, all persons, average weekly hours dura-

tion, 2009 = 100, seasonally adjusted (from the Major Sector Productivity and Cost series

PRS85006023 of the BLS).
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Employment, L is civilian employment for all industries for ages sixteen years and over, seasonally

adjusted (from the CPS series LNS12000000Q of the BLS).

Total Hours, TH is calculated as h ∗ L.

In addition to the labor market variables, the following data are used for estimation. Unless

otherwise noted, data are from the National Income and Product Accounts tables of the Bureau of

Economic Analysis.

GDP. Gross domestic product (Table 1.1.5 line 1). Output (y) growth is

100

[
ln

(
yt

gdpptpopt

)
− ln

(
yt−1

gdppt−1popt−1

)]

where gdpp is the GDP deflator (Table 1.1.4, line 1) and Pop is the civilian noninstitutional popu-

lation (series LNU00000000 of the BLS).

Consumption. Total personal consumption expenditures on nondurables and services (Table

1.1.5, lines 5 and 6). Consumption (c) growth is

100

[
ln

(
ct

gdpptpopt

)
− ln

(
ct−1

gdppt−1popt−1

)]

where gdpp is the GDP deflator (Table 1.1.4, line 1) and Pop is the civilian noninstitutional popu-

lation (series LNU00000000 of the BLS).

Investment. Gross private domestic investment (Table 1.1.5, line 7) and personal consumption

expenditures on durables (Table 1.1.5, line 4). Investment (i) growth is

100

[
ln

(
it

gdpptpopt

)
− ln

(
it−1

gdppt−1popt−1

)]

where gdpp is the GDP deflator (Table 1.1.4, line 1) and Pop is the civilian noninstitutional popu-

lation (series LNU00000000 of the BLS).

Wage Rate. The wage rate w is the index for hourly compensation for nonfarm business,

all persons, 2009 = 100 (from the Major Sector Productivity and Cost series PRS85006103 of the

BLS). Wage growth is 100
[
ln
(

wt
gdppt

)
− ln

(
wt−1

gdppt−1

)]
where gdpp is the GDP deflator (Table 1.1.4,

line 1).

Inflation. The gross inflation rate is the log first difference of the GDP deflator (Table 1.1.4,

line 1).

A-2



1960 1965 1970 1975 1980 1985 1990 1995 2000

−5

0

5

Employment + Hours per Worker (Total Hours)

1960 1965 1970 1975 1980 1985 1990 1995 2000

−5

0

5

Employment

1960 1965 1970 1975 1980 1985 1990 1995 2000

−2

0

2

4

6

Hours per Worker

Figure A.1. CES labor market variables. Black dashed lines: demeaned data; blue solid lines: linearly
detrended data; Red dotted-dashed lines: HP filtered with smoothing parameter of 1600.

Interest Rate. The nominal interest rate is the average of daily figures of the Federal Funds

Rate (from the Board of Governors of the Federal Reserve System) divided by 4.

Inflation and the interest rate are demeaned, while total hours and employment are linearly de-

trended. Figure A.1 illustrates our preference for linearly detrended data. Over the sample period,

hours per worker exhibits a downward trend while employment exhibits an upward trend. When

these (logged) variables are linearly detrended, their sum almost perfectly matches the original, de-

meaned total hours series (their correlation is 0.9999). Thus, the linear filtering appears to account

for the low-frequency structural features of employment and hours per worker while preserving the

original properties of the total hours series. In contrast, HP filtered hours per worker and employ-

ment change the properties of a total hours measure. GDP, consumption, investment, and wages

are neither demeaned nor detrended.
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Observables are linked to model variables in the following manner:




GDPt

Const

Invt

Waget

TotalHourt

Empt

Inflt

FedFundst




=




100 log ḡA

100 log ḡA

100 log ḡA

100 log ḡA

0

0

0

0




+




ŷt − ŷt−1 + ĝAt

ĉt − ĉt−1 + ĝAt

ı̂t − ı̂t−1 + ĝAt

ŵt − ŵt−1 + ĝAt

ˆTHt

L̂t

π̂t

R̂t




Hours and Employment with Alternative Data

We document the robustness of the results of Section 2 of the main paper to alternative measures

of the labor market variables. Table A.1 displays the shares of hours per worker and employment

for the variance of total hours for the two alternative labor market data sets described above, based

on CPS data and Smets and Wouters (2007) observables. The shares are calculated after applying

various transformations on the data and for two alternative sample periods. In all but one case, the

covariance of hours per worker and employment is positive. Hours per worker accounts for 15-48%

of the variance of total hours.

Figure A.2 reports the time-varying comovement in recession-recovery episodes using alternative

detrending methods using the CES dataset. In addition to the linear detrending procedure, we apply

a HP filter with smoothing parameters of 105 and a band pass filter as in Christiano and Fitzgerald

(2003). Results also hold for the alternative measures of labor-market variables (not pictured).

B Privately Efficient Hours

Here we show that the optimality condition in hours worked presented in the main text is implied

by joint-surplus maximization by the firm and the worker. Assume that the firm and the worker

choose hours per worker to maximize the total surplus of the match:

hjt = argmax
{
Sf
jt + Sw

jt

}
,
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TABLE A.1: Components of the Variance of Total Hours for Alternative Data Sources

Filtering βcov,h βcov,L βh βL βcov(
cov(THt,ht)
var(THt)

) (
cov(THt,Lt)
var(THt)

) (
var(ht)

var(THt)

) (
var(Lt)
var(THt)

) (
2cov(ht,Lt)
var(THt)

)

1965:Q1-2007:Q4

CPS data
Demeaned 0.15 0.85 0.07 0.78 0.15
Linear 0.34 0.66 0.15 0.46 0.39
HP 0.28 0.72 0.12 0.56 0.32

SW data

Linear 0.48 0.52 0.39 0.44 0.17
HP 0.28 0.72 0.14 0.57 0.29

1965:Q1-2014:Q4

CPS data*

Demeaned 0.17 0.83 0.09 0.74 0.17
Linear 0.29 0.71 0.11 0.53 0.37
HP 0.31 0.69 0.14 0.51 0.35

SW data

Linear 0.16 0.84 0.24 0.92 -0.16
HP 0.27 0.73 0.13 0.58 0.29

*Data from 1965:1-2011:IV.
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Figure A.2. CES labor market variables. Linear denotes linearly detrended data; HP denotes Hodrick-
Prescott filtered series with smoothing parameter of 105; BP denotes series filtered with the Christiano and
Fitzgerald (2003) procedure with frequency 2,32.
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where Sf
jt denotes the firm surplus:

Sf
jt = (1− α)ϕt

(
Kjt

Āth̃jtLjt

)α

Āth̃jt −
wn
jthjt

Pt
− Γwjt + Etβt,t+1 (1− λ)Sf

jt+1,

and Sw
jt denotes the worker surplus:

Sw
jt =

wn
jt

Pt
hjt − bĀt −

uhjt

uCt
+ Et

[
βt,t+1 (1− λ)Sw

jt+1

(
1−

Mt+1

Ut+1

)]
. (A-1)

The variables appearing above are defined as in the main text—in particular, uhjt denotes the

marginal disutility of an additional worker, and uCt is the marginal utility of consumption. Using

the first-order condition for capital:

ϕtα

(
Kjt

ĀtLjth̃jt

)α−1

= rKt,

the firm surplus can be written as

Sf
jt = (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āth̃jt −
wn
jt

Pt
hjt − Γwjt +Etβt,t+1 (1− λ)Sf

jt+1. (A-2)

The joint surplus is then given by

Sf
jt + Sw

jt = (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āth̃jt − Γwjt + Etβt,t+1 (1− λ)Sf
jt+1

− bĀt −
uhjt

uCt

+ Et

[
βt,t+1 (1− λ)Sw

jt+1

(
1−

Mt+1

Ut+1

)]
.

The first-order condition with respect to hjt implies

(1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āt∆h̃jt
=

∂uhjt/∂hjt

uCt

.

where ∂uhjt/∂hjt denotes the worker’s disutility from supplying an extra hour and

∆
h̃jt

≡
∂h̃jt
∂hjt

=
h̃jt
hjt

− φhhjt

(
hjt − hj

hj

)
.
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The optimal choice of hours per worker implies:

∂uhjt/∂hjt

uCt

= (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āt∆h̃jt
, (A-3)

as in the main text. Notice that, up to a first-order approximation, h̃jt = hjt. Moreover, equation

A-3 shows that hjt only depends on aggregate conditions, i.e., hjt = ht is invariant to the scale of

the firm. Finally, hjt does not directly depend on the hourly wage wjt.

C Wage Bargaining

The firm and worker maximize the Nash product

(
Sf
t

)1−η̄t
(Sw

t )
η̄t ,

where, as detailed in the main text:

Sf
t = (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āth̃t −
wn
t ht
Pt

−
φwĀt

2

(
wn
t

wn
t−1

πιw−1
C π−ιw

Ct−1 − ḡA

)2

+Etβt,t+1 (1− λ)Sf
t+1

and

Sw
t =

wn
t

Pt
ht − bĀt −

uht

uCt
+ (1− λ)Et

[
βt,t+1S

w
t+1

(
1−

Mt+1

Ut+1

)]
.

The first-order condition with respect to wn
t implies

(1− η̄t)S
w
t

∂Sf
t

∂wn
t

+ η̄tS
f
t

∂Sw
t

∂wn
t

= 0, (A-4)

where

∂Sf
t

∂wn
t

= −
ht

Pt

− φwĀt

(
wn

t

wn
t−1

πιw−1
C π−ιw

Ct−1 − ḡA

)
πιw−1
C π−ιw

Ct−1

wn
t−1

+ (1− λ)Et

(
βt,t+1

∂Sf
t+1

∂wn
t

)
(A-5)

and
∂Sw

t

∂wn
t

Pt = ht.

(Notice that we have used the fact that ∂wn
t /∂ht = 0, which stems from equation (A-3).) Moreover,

notice that
∂Sf

t+1

∂wn
t

= φwĀt+1

(
wn
t+1

wn
t

πιw−1
C π−ιw

Ct − ḡA

)
wn
t+1π

ιw−1
C π−ιw

Ct

(wn
t )

2
. (A-6)

A-7



By inserting (A-6) into (A-5), we finally obtain:

∂Sf
t

∂wn
t

Pt = −ht − φwĀt

(
πwtπ

ιw−1
C π−ιw

Ct−1 − ḡA
) πιw−1

C π−ιw
Ct−1πCt

wt−1
(A-7)

+ φw (1− λ)Et

[
βt,t+1Āt+1

(
πwt+1π

ιw−1
C π−ιw

Ct − ḡA
) πwt+1π

ιw−1
C π−ιw

Ct

wt

]
,

where wt ≡ wn
t /Pt.

Finally, let

ηwt =
η̄t

∂Sw
t

∂wn
t

η̄t
∂Sw

t
∂wn

t
− (1− η̄t)

∂S
f
t

∂wn
t

.

The latter means that

1− ηwt =
−(1− η̄t)

∂S
f
t

∂wn
t

η̄t
∂Sw

t
∂wn

t
− (1− η̄t)

∂S
f
t

∂wn
t

.

Using the above expression, the sharing rule in (A-4) can be written more compactly as

(1− ηwt)S
w
t = ηwtS

f
t ,

where ηwt measures the effective bargaining power of the worker and 1 − ηwt is the effective bar-

gaining power of the firm. Notice that, using equation (A-7), the effective bargaining power of the

worker can be written as

ηwt =
η̄tht

η̄tht − (1− η̄t)


 −ht − φwĀt

(
πwtπ

ιw−1
C π−ιw

Ct−1 − ḡA
) π

ιw−1
C π

−ιw
Ct−1πCt

wt−1

+φwEtβt,t+1 (1− λ) Āt+1

(
πwt+1π

ιw−1
C π−ιw

Ct − ḡA
) πwt+1π

ιw−1
C π

−ιw
Ct

wt



.

When φw = 0, the expression above simplifies to ηwt = η̄t.

D Balanced Growth Path and Log-linearized Model

All the non-stationary variables are normalized by the level of labor productivity, i.e., Xt/Āt (with

the exception of the marginal utility of consumption, which is normalized by uCtĀt). In order to

economize on notation, we do not change notation for those variables. Table A.5 below describes

the stationary version of the baseline model, while Table A.6 presents the stationary version of the
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alternative model’s equations.

We log-linearize the model around the deterministic balanced growth path. Below, endogenous

variables that appear without a time subscript denote constant normalized variables. Notice that,

in the deterministic steady state:

Z̄ = β̄ = p̄K = ζK = πC = uK = 1,

while πw = gA. Finally, let x̂t ≡ dxt/x ≃ log(xt) − log (x). Table A.7 presents the log-linearized

equations. Finally, notice that, starting from the stationary log-linear system, we recover a given

non-stationary variable xLt by constructing xLt =
(
ex̂t+x

)
Āt. The growth rate of the non-stationary

variable is then obtained as follows:

∆xLt ≡ log
(
xLt
)
− log

(
xLt−1

)
= x̂t − x̂t−1 + ĝAt + log (gA) .

E Estimation Procedure and Posterior Estimates

To estimate the model, we construct the parameters’ posterior distribution using Bayesian inference

methods. The posterior distribution is a combination of a prior density for the parameters and the

likelihood function, evaluated using the Kalman filter. We take 1.5 million draws from the posterior

distribution using the random walk Metropolis-Hastings algorithm. For inference, we discard the

first 500, 000 draws and keep one every 50 draws to remove some correlation of the draws.1

Table A.2 reports the posterior estimates of the baseline model presented in Section 3 of the

main paper. As discussed in the paper, we estimate two versions of this model. The first includes

seven observables and seven shocks: TFP, investment, preference, government spending, interest

rate, price markup, and bargaining shocks. Parameter estimates from this version are listed under

the column “7 shocks.” The second version includes an additional observable, employment, and an

additional labor market shock, the hours-supply shock h̄t. Parameter estimates from this version

are listed in the column “Baseline” under the headings “8 shocks” in Table A.2.

The columns under the heading “7 shocks” in Table 2 list the posterior mean and 90 percentile

estimates of the baseline model estimated with seven shocks and observables, while the columns

under the headings ‘8 shocks’ and ‘Baseline Model’ list the estimates with eight shocks and observ-

1We set the step size to ensure the acceptance rate is in the range of 20 to 40 percent for all variations of
the estimated model. Convergence diagnostics include cumulative sum of draws (cumsum) statistics and Geweke’s
Separated Partial Means (GSPM) test. Results are available from the authors.
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Table A.2: Posterior Distributions for Estimated Parameters.
Parameter Prior Posterior

7 shocks 8 shocks

Baseline Baseline Preferred

Model Model Model

Dist.* Mean Std. Mean 90% Int Mean 90% Int Mean 90% Int

Preferences

hC , habit formation B 0.5 0.1 0.79 [0.73, 0.83] 0.68 [0.63, 0.72] 0.79 [0.73, 0.84]
ω, inverse Frisch G 2 0.5 3.34 [2.49, 4.33] 6.98 [5.83, 8.24] 2.74 [1.94, 3.68]

Frictions and Production

100 log ḡA, growth rate N 0.4 0.03 0.41 [0.37, 0.45] 0.40 [0.36, 0.44] 0.41 [0.36, 0.45]
νK , investment adj. cost N 4 1.5 4.89 [3.15, 6.93] 6.97 [5.48, 8.54] 7.76 [6.10, 9.50]
φh, hours adj. cost N 4 1.5 n.e. n.e. 6.17 [4.53, 7.91]
ς, capital utilization B 0.5 0.1 0.54 [0.45, 0.62] 0.51 [0.43, 0.58] 0.44 [0.36, 0.52]
η̄, workers bargaining power B 0.5 0.1 0.76 [0.63, 0.86] 0.56 [0.44, 0.68] 0.50 [0.38, 0.62]
b/(w ∗ h), replacement rate B 0.5 0.1 0.59 [0.48, 0.69] 0.56 [0.41, 0.69] 0.47 [0.34, 0.58]
τ , convexity vacancy cost G 2 0.5 1.27 [0.80, 1.83] 2.67 [2.05, 3.38] 2.74 [2.10, 3.48]
φw/1000, wage stickiness N 2 0.4 2.86 [2.31, 3.42] 2.53 [2.00, 3.07] 2.59 [2.07, 3.13]
ιw, wage partial indexation B 0.5 0.15 0.77 [0.61, 0.90] 0.69 [0.54, 0.84] 0.71 [0.56, 0.85]
ξp, price stickiness B 0.66 0.1 0.86 [0.83, 0.89] 0.90 [0.87, 0.93] 0.90 [0.87, 0.93]
ιp, price partial indexation B 0.5 0.15 0.13 [0.06, 0.21] 0.12 [0.05, 0.21] 0.12 [0.05, 0.21]

Monetary policy

̺π , interest resp. to inflation N 1.7 0.3 1.78 [1.55, 2.05] 1.21 [1.01, 1.43] 1.32 [1.12, 1.53]
̺Y , interest resp. to Y gap G 0.125 0.1 0.05 [0.02, 0.09] 0.10 [0.06, 0.14] 0.07 [0.03, 0.12]
̺dY , interest to Y gap growth N 0.13 0.05 0.34 [0.28, 0.40] 0.31 [0.25, 0.36] 0.28 [0.23, 0.34]
̺i, resp. to lagged interest rate B 0.75 0.1 0.76 [0.72, 0.80] 0.73 [0.68, 0.77] 0.75 [0.70, 0.79]

Shocks

ρgA , technology B 0.5 0.2 0.14 [0.05, 0.24] 0.07 [0.02, 0.13] 0.10 [0.03, 0.19]

ρβ , preference B 0.5 0.2 0.70 [0.59, 0.79] 0.84 [0.78, 0.89] 0.67 [0.52, 0.79]
ρPK

, investment B 0.5 0.2 0.84 [0.78, 0.90] 0.20 [0.10, 0.30] 0.20 [0.11, 0.30]

ρθ, price markup B 0.5 0.2 0.88 [0.81, 0.93] 0.82 [0.74, 0.88] 0.85 [0.77, 0.91]
ρη, bargaining B 0.5 0.2 0.37 [0.24, 0.51] 0.16 [0.06, 0.26] 0.16 [0.07, 0.27]
ρg, govt cons B 0.5 0.2 0.99 [0.98, 0.99] 0.99 [0.98, 0.99] 0.98 [0.98, 0.99]
ρı̄, monetary shock B 0.5 0.2 0.13 [0.05, 0.22] 0.15 [0.06, 0.25] 0.16 [0.07, 0.26]
ρh, hours shock B 0.5 0.2 n.e. 0.97 [0.94, 0.98] 0.97 [0.96, 0.99]
100σgA

, technology IG 0.5 1 0.83 [0.75, 0.92] 1.01 [0.92, 1.11] 1.07 [0.97, 1.19]

100σβ , preference IG 1 1 2.43 [2.00, 2.95] 2.06 [1.78, 2.39] 2.87 [2.30, 3.63]
100σPK

, investment IG 0.1 1 0.71 [0.60, 0.83] 1.36 [1.18, 1.56] 1.37 [1.19, 1.57]

100σθ , price markup IG 0.1 1 0.06 [0.05, 0.07] 0.06 [0.05, 0.08] 0.06 [0.05, 0.07]
100ση , bargaining IG 1 1 4.11 [3.36, 4.88] 4.90 [4.28, 5.56] 4.88 [4.27, 5.52]
100σg , govt cons IG 0.5 1 1.47 [1.34, 1.61] 1.53 [1.39, 1.67] 1.57 [1.43, 1.72]
100σı̄, monetary shock IG 0.1 1 0.24 [0.21, 0.26] 0.24 [0.22, 0.27] 0.24 [0.21, 0.26]
100σh̄, hours supply shock IG 0.5 1 n.e. 3.49 [2.97, 4.05] 3.51 [2.93, 4.17]

*Distributions: N: Normal; G: Gamma; B: Beta; IG: Inverse Gamma.
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ables. Posterior estimates for the inverse Frisch elasticity ω and value of the workers’ bargaining

power η̄ are significantly different from those estimated with eight shocks. In the seven shock case,

the Frisch elasticity is estimated to be in the mid-end of microeconomic estimates, which range be-

tween 0.1 and 0.6 (see Card, 1991, for a survey). By contrast, in the eight shock scenario, the value

is closer to the low-end of microeconomic estimates.2 Concerning the worker’s bargaining power, in

the seven shock model, the posterior mean for η̄ is 0.76, slightly above the range commonly used in

calibrated models, 0.4 and 0.6.3 Interestingly, in the eight shock specification, η’s posterior mean

drops to 0.56, in the ballpark of the estimates by Flinn (2006). All together, these results suggest

that the inability of the model to account for the margins of labor adjustment is not intrinsically

linked to specific parameterizations of these two labor market parameters.

The column “Preferred Model” under the heading “8 shocks” in Table 2 lists the posterior mean

and 90 percentile estimates of the preferred model. First, notice that the estimate of the Frisch

elasticity in the preferred model is higher than the baseline specification. Second, the posterior

mean of the hours adjustment cost, φh, is positive and equal to 6.17. To see how φh affects

aggregate outcomes, consider the optimal condition for hours in the preferred model (i.e., with

Jaimovich and Rebelo preferences):

̂̄βt +
̂̄ht − Ψ̂t + ωĥt + X̂t − ûCt = ϕ̂t + α

(
ûKt +

ˆ̃Kt − ĝAt − L̂t−ĥt

)
+ ∆̂

h̃t
.

Solving the above expression for ĥt and substituting out ∆̂h̃,t, we obtain

ĥt =
1

ω + α+ φh

[
ϕ̂t + α

(
ûKt +

ˆ̃Kt − ĝAt − L̂t

)
− ̂̄βt −

̂̄ht + Ψ̂t − X̂t + ûCt

]
.

Thus, ultimately, a higher hours adjustment cost reduces the elasticity of hours per worker to

fluctuations in the value of the marginal product of hours and the marginal utility of consumption.

To get a sense of its quantitative relevance, consider the posterior-mean estimates for ω (the inverse

of the Frisch elasticity) and φh in the preferred model: ω = 2.74 and φh = 6.17 (together with α

calibrated at 0.3). Effectively, the hours’ adjustment cost changes the inverse of the Frisch elasticity

2Ceteris paribus, ω also affects the disutility of labor which, together with the replacement rate, determines the
outside option of the worker. The latter evaluated at the posterior mean is 0.83 with seven shocks, while it is 0.69
with eight shocks. The larger outside option increases the sensitivity of the surplus and employment to aggregate
shocks, other things equal.

3A higher workers’ bargaining power also increases employment’s response to innovations. Ceteris paribus, a high
workers’ bargaining power reduces the firm’s surplus, making the latter more sensitive to shocks—a mechanism in
the spirit of Hagedorn and Manovskii (2008).
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from 2.74 to 8.91 in the condition that determines hours per worker (since its the sum of the hours’

adjustment cost and the inverse of the Frisch elasticity that enters this condition). This value is still

in the range of empirical micro-economic estimates. Importantly, introducing an hours’ adjustment

cost in the model is not isomorphic to changing the Frisch elasticity altogether. The reason is that

the hours’ adjustment cost does not affect the value of labor disutility that enters the worker’s

surplus (relevant for wage bargaining). In this case, it is only the inverse of the Frisch elasticity

that matters (ω).

The posterior mean of the replacement rate b/(wh) is 0.47 in the preferred model, consistent

with U.S. data (OECD, 2004). In addition, the posterior interval is tighter relative to the prior.

The posterior mean of the flow value of unemployment—the sum of the unemployment benefit and

the real value of leisure—relative to the steady-state wage is larger and equal to 0.75, closer to the

value assumed by Hall (2008). By contrast, in the baseline model with eight shocks, the replacement

rate tends to be larger, with a 90 percentile interval between 0.41 and 0.69. The estimate for the

bargaining power remains close to the value proposed by Flinn (2006).

The other estimated parameters are affected little across the baseline and preferred specifications

with eight shocks. The shock processes in the preferred model in general have lower persistence and

larger standard deviations, for instance the process for the preference shock. Overall the variability

of the exogenous variables is similar across specifications.

F Variance Decomposition

Table A.3 reports the forecast error variance decompositions at the posterior mean estimates of the

preferred model for the observables, as well as for hours per worker, unemployment, and vacancies.

G Historical Decompositions and The Margins of Labor Adjustment

Figure A.3 plots the historical decomposition of the growth rate of employment, hours per worker,

and output using the posterior mean estimates of the preferred model.

The historical decompositions display the structural innovations responsible for the time-varying

comovement between hours per worker and employment in U.S. recoveries. For instance, employ-

ment and hours per worker comove positively in the recoveries of the first part of the sample. Figure

A.3 shows that the recoveries of 1970, 1975, and 1982 are preceded by negative investment-specific

shocks, as well as negative markup shocks in 1975 and 1982 (see Appendix F for the smoothed
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Table A.3: Forecast Error Variance Decompositions at Different Horizons.

Variable Shock
Technology Pref Inv Barg Labor Markup Govt Monetary

Specific Power Supply Spending

Output Growth 0.23 0.09 0.56 0.00 0.00 0.01 0.10 0.01
Cons Growth 0.13 0.81 0.02 0.00 0.00 0.00 0.02 0.02
Inv Growth 0.01 0.00 0.96 0.00 0.00 0.01 0.00 0.01
Wage Growth 0.03 0.00 0.00 0.79 0.00 0.18 0.00 0.00
Inflation 0.10 0.04 0.04 0.01 0.02 0.75 0.01 0.03
Interest Rate 0.08 0.04 0.07 0.00 0.02 0.07 0.02 0.70
Total Hours 0.09 0.14 0.47 0.02 0.08 0.04 0.08 0.08
Employment 0.05 0.15 0.42 0.07 0.07 0.05 0.06 0.13
Hours per Worker 0.08 0.04 0.19 0.00 0.63 0.00 0.04 0.00
Unemployment 0.02 0.01 0.01 0.93 0.02 0.00 0.00 0.00
Vacancies 0.05 0.15 0.42 0.07 0.07 0.05 0.06 0.13

2 4 6
−2

0

2

 1
97

0 

Output Growth

 

 

2 4 6

−1

0

1

∆ Employment

 1
97

0 

2 4 6

−0.5

0

0.5

1

∆ Hours
per Worker

 1
97

0 

Quarters

2 4 6
−3

−2

−1

0

1

 1
97

5 

Output Growth

2 4 6

−2

−1

0

 1
97

5 

∆ Employment

2 4 6
−1

−0.5

0

0.5

 1
97

5 

∆ Hours
per Worker

Quarters

2 4 6

−1

0

1

2

 1
98

2 

Output Growth

2 4 6
−1

0

1

 1
98

2 

∆ Employment

2 4 6
−0.5

0

0.5

 1
98

2 

∆ Hours
per Worker

Quarters

2 4 6

−1

0

1

Output Growth

 1
99

1 

2 4 6
−1

−0.5

0

 1
99

1 

∆ Employment

2 4 6
−0.4

−0.2

0

0.2

0.4

 1
99

1 

∆ Hours
per Worker

Quarters

2 4 6

−1

0

1

Output Growth

 2
00

1 

2 4 6

−0.8
−0.6
−0.4
−0.2

0
0.2

∆ Employment

 2
00

1 

2 4 6
−0.4

−0.2

0
0.2

0.4

∆ Hours
per Worker

 2
00

1 

Quarters

Technology

Preference

Inv Specific

Barg Power

Labor Supply

Markup

Govt Spending

Monetary

Initial Conditions

Figure 3. Historical decomposition for US business cycle recoveries.
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shocks in the recessions and recoveries we analyze). During the recoveries, these shocks are damp-

ened or reversed, which simultaneously boosts employment and hours per worker. By contrast, the

recoveries of 1991 and 2001 feature negative comovement between employment and hours. In these

episodes, the reversion of investment-specific shocks is significantly weaker. Moreover, the recov-

eries of 1991 and 2001 are characterized by a larger role for labor market disturbances: positive

shocks to the workers’ bargaining power in 1991 and lower disutility of hours in 2001. In line with

the previous discussion, both labor market shocks and the reduced importance of supply shocks

break the positive comovement between the margins of labor adjustment during these recoveries.

H Sensitivity Analysis

We investigate the robustness of our results under several alternative specifications. The results

of these robustness checks are summarized in Table A.4. For reference, the first two rows report

the results of the baseline and preferred models, previously discussed. To understand how well

the model accounts for the labor market variables, we report for each specification the shares of

the variance of total hours attributed to hours per worker, employment, and their covariance. In

addition, we report log marginal data densities and twice the natural logarithm of Bayes factors

to provide an assessment of relative fit of models to the data, see Section 5 for more discussion.

In all robustness cases, the preferred model implies a substantially greater fit. We discuss each

robustness case in turn.

The preferred model includes two additional features relative to the baseline, namely JR pref-

erences and costly hours adjustment. We consider each extension separately in the rows labeled

“Model w/o JR preferences” and “Model w/o costly hours adj.” Although each feature individually

improves the model’s fit relative to the baseline, the inclusion of both, the “Preferred Model” row,

provides the best fit. Omitting JR preferences reduces the model’s ability to match the positive

covariance between employment and hours per worker, as discussed in Section 5. In contrast, ex-

cluding the costly hours adjustment makes it more likely that the intensive margin is as volatile as

the extensive margin.

Alternative Shocks

We estimate the baseline model with seven shocks when the hours supply shock is included as

opposed to the bargaining power shock. Hours supply shocks can potentially improve the model’s

A-14



Table A.4: Robustness Checks from Alternative Estimated Specifications.

Log Marginal 2 ln(Bayes Factor) βh βL βcov

Data Density vs. Preferred

CES Data 0.18 0.51 0.31

Models, 8 shocks

Preferred Model -1024 0 [0.13, 0.56] [0.20, 0.71] [-0.05, 0.44]
Baseline Model -1073 98 [0.16, 0.76] [0.22, 0.89] [-0.43, 0.37]
Model w/o JR preferences -1041 34 [0.13, 0.57] [0.24, 0.83] [-0.21, 0.41]
Model w/o costly hours adj. -1043 38 [0.14, 0.58] [0.19, 0.57] [-0.04, 0.43]
Baseline Model, ᾱ shock -1077 106 [0.16, 0.79] [0.23, 0.92] [-0.49, 0.37]
Baseline Model, right-to-manage, ᾱ shock -1079 110 [0.55, 1.54] [0.03, 0.67] [-1.04, 0.24]
Preferred Model, lagged costly hours adj. -1043 38 [0.14, 0.58] [0.19, 0.67] [-0.04, 0.43]
Preferred Model, nominal costly hours adj. -1042 36 [0.15, 0.59] [0.19, 0.66] [-0.04, 0.43]
Preferred Model, habit in leisure -1046 44 [0.20, 0.69] [0.14, 0.58] [-0.07, 0.43]
Preferred Model, no consumption habit -1142 234 [0.13, 0.57] [0.24, 0.83] [-0.21, 0.41]
Preferred Model, price markup estimated -1025 2 [0.12, 0.54] [0.21, 0.72] [-0.05, 0.44]
Preferred Model, sep. shock, no h̄ shock -1057 66 [0.10, 0.85] [0.12, 0.91] [-0.51, 0.45]
Preferred Model, sep. shock & separation data -967 0 [0.13, 0.55] [0.20, 0.70] [-0.04, 0.44]
Baseline Model, sep. shock & separation data -1015 96 [0.16, 0.75] [0.22, 0.88] [-0.42, 0.38]
Preferred Model, flex price & wage -1169 0 [0.07, 0.32] [0.23, 0.62] [0.24, 0.49]
Baseline Model, flex price & wage -1256 174 [0.08, 0.71] [0.24, 1.07] [-0.50, 0.36]
Preferred Model, mix wage obs -1332 0 [0.06, 0.56] [0.22, 0.95] [-0.28, 0.45]
Baseline Model, mix wage obs -1380 96 [0.09, 0.72] [0.26, 1.12] [-0.62, 0.39]

Models, 7 shocks

7 shocks, η̄ shock -1008 0 [0.03, 0.22] [0.64, 1.21] [-0.35, 0.25]
7 shocks, h̄ shock -1076 136 [0.18, 0.60] [0.10, 0.50] [0.16, 0.44]
7 shocks, low Frisch calibrated -1016 16 [0.01, 0.07] [0.77, 1.09] [-0.13, 0.19]
7 shocks, high Frisch calibrated -1025 34 [0.14, 1.10] [0.46, 2.03] [-1.98, 0.23]

CPS Data 0.07 0.78 0.15

Models, 8 shocks

Preferred Model -1152 0 [0.05, 0.30] [0.31, 0.70] [0.14, 0.45]
Baseline Model -1184 64 [0.11, 0.47] [0.26, 0.78] [-0.07, 0.43]

SW Data 0.39 0.44 0.17

Models, 8 shocks

Preferred Model -989 0 [0.14, 0.62] [0.18, 0.67] [-0.07, 0.42]
Baseline Model -1051 124 [0.20, 0.83] [0.19, 0.80] [-0.40, 0.36]

Note: Parenthesis denote 90 percent posterior intervals. Log marginal data densities calculated using Geweke’s modified
harmonic mean estimator; values are comparable conditional on observables, with different sets denoted by horizontal lines.
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fit with respect to labor market variables, as they directly affect the intensive labor margin. The

total hours variance shares in this case are listed in row “7 shocks, h̄ shock” of Table A.4. For

comparison, the estimates from the baseline model with seven shocks is included for reference in row

“7 shocks, η̄ shock.” While the hours supply shock does ensure the model matches the covariance

of employment and hours per worker, it does so with a counterfactually high volatility of hours per

worker, as βh’s bands encompass higher values than βL’s bands.

Sensitivity to the Frisch Elasticity

In this section, we show that the inability of the baseline model to account for the data holds

independent of the specific value of the Frisch elasticity of labor supply. To illustrate the latter

point, we estimated two alternative versions of the model with seven shocks, calibrating the Frisch

elasticity either to be 1/7—a much lower value than the 1/3 estimate of the “7 shocks Baseline”

specification from Table A.2,4 and to be one—a much higher value consistent with many macro

calibrations in the literature.

Rows “7 shocks, low Frisch calibrated” and “7 shocks, high Frisch calibrated” of Table A.4

summarize the estimation results from these two versions of the model. When the Frisch elasticity

is close to zero, hours’ volatility becomes counterfactually low—whereas βh in the data is 0.18, the

posterior bands in this case range from 0.01 to 0.07. Alternatively, when the Frisch is calibrated

to one, the opposite holds, and hours’ volatility become counteractually high. In both cases,

the posterior estimates for the comovement between hours per worker and employment remains

counterfactually low.

Right to Manage Hours

We now consider an alternative determination of hours, the so-called right to manage hours (hence-

forth RTM). Introducing RTM poses an additional empirical challenge for the baseline model, since

under RTM, the hours supply shock has no direct effect on the condition that determines hours

per worker and only shows up in the worker’s surplus. As a result, simply introducing RTM in the

baseline model implies a much worse fit compared to our original specification. Thus, to avoid an

unfair comparison, we amended the structure of the labor market shocks by considering a shock

to the marginal product of hours (see the derivations below) in place of our hours supply shock.

4We chose 1/7 because this is the same Frisch elasticity estimated in our Baseline model with 8 shocks (see Table
A.2).
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We then estimated two models: (1) the baseline model with the shock to the marginal product of

hours (replacing the hours supply shock) and (2) an alternative version with RTM (replacing the

neoclassical hours supply condition).

Hours Determination

With right-to-manage bargaining, firms maintain the right to choose the hours worked by their

employees after wages have been bargained. In this case, hours per worker satisfy

hjt = argmax
{
Sf
jt

}
,

where the firm-surplus is defined as in the main text:

Sf
jt = (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āth̃jt −
wn
jthjt

Pt
− Γwjt +Etβt,t+1 (1− λ)Sf

jt+1. (A-8)

In the symmetric equilibrium, the first-order condition implies

(1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āt∆h̃jt
= wjt, (A-9)

where ∆h̃jt
≡ ∂h̃jt/∂hjt. Thus, under RTM, the hourly wage equals the value of the marginal prod-

uct of hours per worker. In other words, in this alternative framework, hours supply considerations

(and thus wealth effects) do not affect ht.

An implication of (A-9) is that the hours supply shock (h̄t) has no direct effect on the condition

that determines hours per worker—h̄t only show up in the workers surplus. In turn, we have verified

that this assumption implies a very poor fit of the model relative to privately-efficient bargaining.

To avoid an unfair comparison, we amended the structure of the labor market shocks by considering

a shock to the marginal product of hours in place of our hours supply shock. In particular, we now

assume that

h̃jt ≡ hᾱt
jt

[
1−

φh

2

(
hjt − hj

hj

)2
]
,

where

log ᾱt = ρᾱ log ᾱt−1 + εᾱ,t
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with εᾱ,t ∼ N
(
0, σ2

ᾱ

)
. This assumption implies that

∆
h̃jt

≡
∂h̃jt
∂hjt

= ᾱt
h̃jt
hjt

− φhh
ᾱt
jt

(
hjt − hj

hj

)
.

Nash Bargaining

The wage bargaining is also affected by the assumption of right to manage, since now ∂ht/∂w
n
t 6= 0

as implied by equation (A-9). To see this, apply the implicit function theorem. Let

G (·) ≡ (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āt∆h̃t
−

wn
jt

Pt
.

Then

∆h,wn

jt ≡
∂hjt
∂wn

jt

= −
∂G (·) /∂wn

jt

∂G (·) /∂hjt
=

1/Pt

(1− α)ϕt

(
rKt
ϕtα

) α
α−1

Āt

∂∆h̃jt

∂hjt

where

∂∆
h̃jt

∂hjt
= ᾱt

(
∂h̃jt
∂hjt

1

hjt
−

h̃jt
h2jt

)
− φhh

ᾱt
jt − ᾱtφhh

ᾱt−1
jt

(
hjt − hj

hj

)

=
ᾱt

hjt

(
∆

h̃jt
−

h̃jt
hjt

)
− φhh

ᾱt
jt

[
1−

ᾱt

hjt

(
hjt − hj

hj

)]
.

The firm and worker maximize the Nash product

(
Sf
jt

)1−η̄t (
Sw
jt

)η̄t ,

where Sf
jt is defined by (A-8) and

Sw
jt =

wn
jt

Pt
hjt − bĀt −

uhjt

uCt
+ (1− λ)Et

[
βt,t+1S

w
jt+1

(
1−

Mt+1

Ut+1

)]
.

The first-order condition with respect to wn
t implies

(1− η̄t)S
w
jt

∂Sf
jt

∂wn
jt

+ η̄tS
f
jt

∂Sw
jt

∂wn
jt

= 0, (A-10)
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where

∂Sf
jt

∂wn
jt

= (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āt∆h̃jt
∆h,wn

jt −
hjt
Pt

−
wn
jt∆

h,wn

jt

Pt

− φwĀt

(
wn
jt

wn
jt−1

πιw−1
C π−ιw

Ct−1 − ḡA

)
πιw−1
C π−ιw

Ct−1

wn
jt−1

+ φw (1− λ)Et


βt,t+1Āt+1

(
wn
jt+1

wn
jt

πιw−1
C π−ιw

Ct − ḡA

)
wn
jt+1π

ιw−1
C π−ιw

Ct(
wn
jt

)2




and
∂Sw

jt

∂wn
jt

=
hjt
Pt

+
wn
jt

Pt
∆h,wn

jt −
∂uhjt

∂hjt
∆h,wn

jt

1

uCt
.

Finally, as in the main paper, let

ηwt =
η̄t

∂Sw
t

∂wn
t

η̄t
∂Sw

t
∂wn

t
− (1− η̄t)

∂S
f
t

∂wn
t

.

The latter means that

1− ηwt =
−(1− η̄t)

∂S
f
t

∂wn
t

η̄t
∂Sw

t
∂wn

t
− (1− η̄t)

∂S
f
t

∂wn
t

.

Using the above expression, the sharing rule in (A-4) can be written more compactly as

(1− ηwt)S
w
t = ηwtS

f
t .

Estimation

Rows “Baseline Model, ᾱ shock” and “Baseline Model, right-to-manage, ᾱ shock” of Table A.4

summarize the estimation results from these two versions of the model. Comparing these rows

of the table to our original baseline specification, Row “Baseline Model”, both specifications with

efficient hours (rows ‘Baseline Model” and “Baseline Model, ᾱ shock”) fit the shares of the variance

of total hours attributed to hours per worker, employment, and their covariance better than the

right-to-manage specification (row “Baseline Model, right-to-manage, ᾱ shock”). In particular,

the lack of positive comovement between employment and hours per worker is magnified under

RTM. Intuitively, hours per worker equates the marginal product of an hour worked to the wage

rate under RTM, implying that, with wage rigidities, hours falls when employment increases, other
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things equal. This provides further support for the assumption of efficient bargaining prevailing in

the literature.

Alternative Modeling of Costly Hours Adjustment

In this section, we consider two alternative specifications of the costly hours adjustment: (1)

an adjustment cost relative to the lagged level of hours and (2) an adjustment cost modeled as

a resource cost. In addition, we assess the sensitivity of our results to modeling costly hours

adjustment through habit in leisure in the household’s utility function, i.e. in terms of a cost

through labor supply as opposed to through labor demand. In all cases, we show the model fit of

these alternative specifications worsens relative to our original framework.

Lagged Hours Adjustment Cost

First, we considered a variant of the preferred model where the hours’ cost occurs in deviations of

the level of hours from its previous level, rather than its steady-state level as we originally assumed.

The hours adjustment cost is now defined as φh
2

(
hjt

hjt−1
− 1
)2

.

As a result, the present discounted value of the stream of profits for the representative intermediate-

input producer is now given by:

ΠI
jt ≡ Et

{
∞∑

t=s

βs,s+1

[
ϕsK

α
js

(
ĀsLjsh̃js

)1−α

−
wn
jshjs

Ps
Ljs − ΓwjsLjs − rKsKjs − κĀs

V 1+τ
js

1 + τ

]}
,

(A-11)

where effective hours per worker are defined by:

h̃jt = hjt

[
1−

φh

2

(
hjt
hjt−1

− 1

)2
]
.

The value of a match to the firm is

Sf
jt ≡

∂ΠI
jt

∂Ljt
= (1− α)ϕt

(
Kjt

Āth̃jtLjt

)α

Āth̃jt −
wn
jthjt

Pt
− Γwjt +Etβt,t+1 (1− λ)Sf

jt+1. (A-12)

Notice that the first-order condition for Kjt implies

Kjt

ĀtLjth̃jt
=

(
rKt

ϕtα

) 1
α−1

.

A-20



Therefore:

Sf
jt = (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āth̃jt −
wn
jthjt

Pt
− Γwjt + Etβt,t+1 (1− λ)Sf

jt+1. (A-13)

As in the main paper, hours per worker maximize the joint surplus of the firm and worker:

hjt = argmax
{
Sf
jt + Sw

jt

}
,

where Sw
jt denotes the worker’s surplus:

Sw
jt =

wn
jt

Pt
hjt − bĀt −

uhjt

uCt

+ Et

[
βt,t+1 (1− λ)Sw

jt+1

(
1−

Mt+1

Ut+1

)]
. (A-14)

The joint surplus can then be written as:

Sf
jt + Sw

jt = (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āth̃jt − Γwjt − bĀt −
uhjt

uCt

+ Etβt,t+1 (1− λ)Sf
jt+1 + Et

[
βt,t+1 (1− λ)Sw

jt+1

(
1−

Mt+1

Ut+1

)]
.

The derivative with respect to hjt implies:

∂
(
Sf
jt + Sw

jt

)

∂hjt
≡ (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āt
∂h̃jt
∂hjt

−
∂
(
uhjt/∂hjt

)

uCt

+ Etβt,t+1 (1− λ)
∂Sf

jt+1

∂hjt
= 0,

(A-15)

where we have used the fact that
∂Γwjt

∂hjt
=

∂Sw
jt+1

∂hjt
= 0.

Finally, notice that
∂h̃jt
∂hjt

≡ ∆h̃jt
=

h̃jt
hjt

− φh

(
hjt
hjt−1

− 1

)
hjt
hjt−1

and

∂Sf
jt+1

∂hjt
≡ ∆

S
f
t+1

h̃jt
= (1− α)ϕt+1

(
rKt+1

ϕt+1α

) α
α−1

Āt+1
∂h̃jt+1

∂hjt

= φh (1− α)ϕt+1

(
rKt+1

ϕt+1α

) α
α−1

Āt+1

(
hjt+1

hjt
− 1

)(
hjt+1

hjt

)2

.
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Define MRSt ≡
(
∂uhjt/∂hjt

)
/uCt in equation (A-14), and let

VMPHt = (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āt∆h̃jt
+ Etβt,t+1 (1− λ)∆

S
f
t+1

h̃jt

in equation (A-15). The optimality in hours implies:

VMPHt ≡ MRSt.

We rewrite the new equations in terms of detrended variables:

h̃jt = hjt

[
1−

φh

2

(
hjt
hjt−1

− 1

)2
]

MRSt =
∂uhjt/∂hjt

uCt

VMPHt = (1− α)ϕt

(
rKt

ϕtα

) α
α−1

∆
h̃jt

+ Etβt,t+1 (1− λ)∆
S
f
t+1

h̃jt
gA,t+1

∆
S
f
t+1

h̃jt
= φh (1− α)ϕt+1

(
rKt+1

ϕt+1α

) α
α−1

(
hjt+1

hjt
− 1

)(
hjt+1

hjt

)2

∆h̃jt
=

h̃jt
hjt

− φh

(
hjt
hjt−1

− 1

)
hjt
hjt−1

,

where, as in the main paper, we do not change notation for the stationarized variables in order to

economize on notation. Next, we compute the log-linear approximation around the non-stochastic

steady state:

̂̃hjt = ĥjt

̂VMPHt = M̂RSt

̂VMPHtVMPH = ϕα
1

1−α

(
rK
ϕ

) α
α−1

(ϕ̂t − r̂Kt)

+ (1− α)ϕ

(
rK
ϕα

) α
α−1 (

∆̂
h̃jt

+ ϕ̂t

)
+ (1− λ)EtβgAEt∆̂

S
f
t+1

h̃jt

∆̂
h̃jt

= −φh

(
ĥjt − ĥjt−1

)
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∆̂
S
f
t+1

h̃jt
= φh (1− α)ϕ

(
rK
ϕα

) α
α−1 (

ĥjt+1 − ĥjt

)
.

Row “Preferred Model, lagged costly hours adj.” of Table A.4 provides the summary results

in this case, which can be compared to row “Preferred Model” showing our original specification.

As demonstrated in the table, the alternative specification has no substantial effect on the shares

of the variance of total hours attributed to hours per worker, employment, and their covariance.

However, our original specification implies a better fit than the lagged costly hours adjustment

specification according to the Bayes factor.

Monetary Hours Adjustment Cost

Second, we considered a variant of the preferred model where the adjustment cost on hours is a pure

monetary loss. In this case, symmetrically to the wage-adjustment cost, firms have to purchase the

basket of final consumption when changing hours per worker, incurring the cost

φhĀt

2

(
hjt − hj

hj

)2

Pt,

where φh ≥ 0 is in units of consumption. The firm production function is now

Yjt = Kα
jt

(
ĀtLjthjt

)1−α
,

since now h̃t = ht. The present discounted value of the stream of profits is given by:

ΠI
jt ≡ Et

{
∞∑

t=s

βs,s+1

[
ϕsK

α
js

(
ĀsLjshjs

)1−α
−

wn
jshjsLjs

Ps
−
(
Γhjs + Γwjs

)
Ljs − rKsKjs − κĀs

V 1+τ
js

1 + τ

]}
,

where

Γhjt ≡
φhĀt

2

(
hjt − hj

hj

)2

.

The value of a match to the firm is

Sf
jt = (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āthjt −
wn
jthjt

Pt
−
(
Γhjt + Γwjt

)
+Etβt,t+1 (1− λ)Sf

jt+1,
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where once again we have used the first-order condition for capital. As in the main paper, hours

per worker maximize the joint surplus of the firm and worker:

hjt = argmax
{
Sf
jt + Sw

jt

}
,

where Sw
jt denotes the worker’s surplus:

Sw
jt =

wn
jt

Pt
hjt − bĀt −

uhjt

uCt

+ Et

[
βt,t+1 (1− λ)Sw

jt+1

(
1−

Mt+1

Ut+1

)]
.

Therefore the joint surplus can be written as:

Sf
jt + Sw

jt = (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āthjt −
(
Γhjt + Γwjs

)
− bĀt

−
uhjt

uCt

+ Etβt,t+1 (1− λ)Sf
jt+1 + Et

[
βt,t+1 (1− λ)Sw

jt+1

(
1−

Mt+1

Ut+1

)]
.

The derivative with respect to hjt implies:

∂
(
Sf
jt + Sw

jt

)

∂hjt
≡ (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āt − φhĀt

(
hjt − hj

hj

)
−

∂uhjt/∂hjt

uCt
= 0,

where we have used the fact that

∂Γwjt

∂hjt
=

∂Sw
jt+1

∂hjt
=

∂Sf
jt+1

∂hjt
= 0.

Let MRSt ≡
(
∂uhjt/∂hjt

)
/uCt. We then finally obtain:

VMPHt = MRSt,

where

VMPHt ≡ (1− α)ϕt

(
rKt

ϕtα

) α
α−1

Āt − φhĀt

(
hjt − hj

hj

)
.
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Combining the household’s and government’s budget constraints now yields the following aggregate

resource constraint:

Y C
t

[
1−

ν

2

(
πCtπ

ιp−1
C π

−ιp
Ct−1 − 1

)2]
= (A-16)

Ct + IKt + κtĀtVt +Gt +
φwĀt

2

(
πwtπ

ιw−1
C π−ιw

Ct−1 − ḡA
)2

Lt +
φhĀt

2

(
hjt − hj

hj

)2

Lt.

Intuitively, total output produced by firms must now be equal to the sum of market consumption,

investment in physical capital, the costs associated to job creation, the purchase of goods from the

government, and the real cost of changing prices, wages, and hours. In a first-order approximation

to the model policy functions, the extra term in the resource constraint from the cost of adjusting

hours disappears, since the cost is zero in steady state. For this reason we omit this equation below.

We rewrite the new equations in terms of detrended variables:

MRSt =
∂uhjt/∂hjt

uCt

VMPHt = (1− α)ϕt

(
rKt

ϕtα

) α
α−1

− φh

(
hjt − hj

hj

)

where, as in the main paper, we do not change notation for the stationarized variables in order to

economize on notation. Next, we compute the log-linear approximation around the non-stochastic

steady state:

̂VMPHt = M̂RSt

̂VMPHtVMPH = ϕα
1

1−α

(
rK
ϕ

) α
α−1

(ϕ̂t − r̂Kt) + (1− α)ϕ

(
rK
ϕα

) α
α−1

ϕ̂t − φhĥjt.

Row “Preferred Model, nominal costly hours adj.” of Table A.4 shows that this alternative

specification also has no substantial effect on the shares of the variance of total hours attributed to

hours per worker, employment, and their covariance, relative to our original specification. However,

our original specification implies a better fit according to the Bayes factor.

Habit in Leisure

Finally, we considered an alternative where the cost to adjustment in hours instead falls on house-

holds by modeling habit in leisure in the household’s utility function. For this reason, in this version

of the model, φh = 0.
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Household preferences are now given by

Wt ≡ Et

∞∑

s=t

βs−tβ̄s

[
log

(
Ct − hCCt−1 − h̄tXt

∫ Lt

0

(hjt − hhht−1)
1+ω

1 + ω
dj

)]
,

where γ ∈ (0, 1], Xt = (Ct − hCCt−1)
γ X1−γ

t−1 , and

ht =

Lt∫

0

hjtdj.

This alternative utility function affects (i) the marginal rate of substitution between consumption

and leisure and (ii) the worker’s outside option at the wage bargaining stage. As a result, both the

optimality condition for hours per worker and the bargained wage change.

Privately efficient hours continue to equate the marginal rate of substitution between consump-

tion and leisure to the value of the marginal product of an hour worked. However, in this case the

marginal rate of substitution is given by

−
∂uhjt/∂hjt

uCt

=
−Ψ−1

t β̄th̄tXt (hjt − hhht−1)
ω

uCt
,

where

Ψt ≡ Ct − hCCt−1 − h̄tXt

∫ Lt

0

(hjt − hhht−1)
1+ω

1 + ω
dj.

The opportunity cost of giving up leisure for an employed worker (expressed in units of consumption)

is now given by:

oclt ≡
Ψ−1

t β̄th̄tXt (ht − hhht−1)
1+ω

(1 + ω)uCt
.

In log-linear terms the equations are as follows:

M̂RSt = −Ψ̂t +
̂̄βt +

̂̄ht + X̂t +
ω

(1− hh)

(
ĥt − hhĥt−1

)
,

ôclt = −Ψ̂t +
̂̄βt +

̂̄ht + X̂t +
1 + ω

(1− hh)

(
ĥt − hhĥt−1

)
− ûC,t.

Row “Preferred Model, habit in leisure” of Table A.4 provides the summary results from this

specification, which can be compared to row “Preferred Model” showing our original specification.

Habit in leisure has somewhat-similar shares of the variance of total hours attributed to hours per

worker, employment, and their covariance; notably though, the variance share attributed to hours
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increases to the point that the share in the data is outside the posterior distribution. This helps

explain why the model has a substantially worse fit, according to the Bayes factor, relative to our

original specification.

Sensitivity to Steady-State Price Markups

To understand how sensitive our estimates are to the calibration of the steady-state price markup,

we re-estimated the preferred model with the addition of the steady-state price markup as a pa-

rameter to be estimated. In this case, we adopted a prior with a normal distribution centered at

1.25 and standard deviation of 0.07. Thus, the three standard deviation range of the prior for the

price markup ranges from 1.04 to 1.46. In contrast, the estimated 90% bands for the posterior

distribution of the price markup are from 1.11 to 1.25, and the posterior mean is 1.18.

Row “Preferred Model, price markup estimated” of Table A.4 provides our summary results

from this case, which can be compared to row “Preferred Model” showing our original specification.

As demonstrated in the table, the alternative specification has virtually identical implied shares

of the variance of total hours attributed to hours per worker, employment, and their covariance.

Moreover, the two specifications imply an indistinguishable fit according to the Bayes factor.

The Role of Habit in Consumption

To assess the sensitivity of our results to habit in consumption, we estimated the preferred model

with the consumption habit parameter calibrated to zero. Row “Preferred Model, no consumption

habit” of Table A.4 summarizes the results in this case. Without habit, the preferred model is

more likely to imply a negative covariance between the intensive and extensive margins.

More importantly, the model without consumption habit has trouble reproducing the persistence

of consumption’s correlation with itself and other macro variables, such as total hours and hours

per worker. This can be seen in Figure A.4, which displays correlograms from the preferred model

without consumption habit (black dashed lines) relative to the preferred model estimated with

consumption habit (red dotted-dashed lines). Notably, several data moments lie outside the bands

for the model estimated without consumption habit.

The Role of Nominal Rigidities

To assess the importance of nominal rigidities for our results, we estimated a real version of the

preferred model and baseline models. In this case, we removed inflation and the nominal interest

A-27



0 1 2 3 4 5

0

0.5

1
corr(Y

t
,Y

t-k
)

0 1 2 3 4 5

0

0.2

0.4

0.6

corr(Y
t
,C

t-k
)

0 1 2 3 4 5

-0.2

0

0.2

corr(Y
t
,TH

t-k
)

0 1 2 3 4 5

-0.2

0

0.2

corr(Y
t
,L

t-k
)

0 1 2 3 4 5

-0.2

0

0.2

corr(Y
t
,h

t-k
)

0 1 2 3 4 5

0

0.2

0.4

0.6

corr(C
t
,Y

t-k
)

0 1 2 3 4 5

0

0.5

1
corr(C

t
,C

t-k
)

0 1 2 3 4 5

-0.2

0

0.2

corr(C
t
,TH

t-k
)

0 1 2 3 4 5

-0.2

0

0.2

corr(C
t
,L

t-k
)

0 1 2 3 4 5

-0.2

0

0.2

corr(C
t
,h

t-k
)

0 1 2 3 4 5
0

0.1

0.2

0.3

corr(TH
t
,Y

t-k
)

0 1 2 3 4 5
0

0.2

0.4

corr(TH
t
,C

t-k
)

0 1 2 3 4 5

0.6

0.8

1
corr(TH

t
,TH

t-k
)

0 1 2 3 4 5

0.4

0.6

0.8

corr(TH
t
,L

t-k
)

0 1 2 3 4 5

0.4

0.6

0.8

corr(TH
t
,h

t-k
)

0 1 2 3 4 5
0

0.2

0.4

corr(L
t
,Y

t-k
)

0 1 2 3 4 5
0

0.2

0.4

corr(L
t
,C

t-k
)

0 1 2 3 4 5

0.4

0.6

0.8

corr(L
t
,TH

t-k
)

0 1 2 3 4 5

0.6

0.8

1
corr(L

t
,L

t-k
)

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

corr(L
t
,h

t-k
)

0 1 2 3 4 5

0

0.1

0.2

corr(h
t
,Y

t-k
)

0 1 2 3 4 5

-0.1

0

0.1

0.2

0.3

corr(h
t
,C

t-k
)

0 1 2 3 4 5

0.4

0.6

0.8

corr(h
t
,TH

t-k
)

0 1 2 3 4 5

0

0.2

0.4

0.6

0.8

corr(h
t
,L

t-k
)

0 1 2 3 4 5

0.6

0.8

1
corr(h

t
,h

t-k
)

Figure 4. Correlograms from the data (solid lines) and 90 percent posterior intervals from 1) the preferred
model estimated without consumption habits (black dashed lines) and 2) the preferred model (red dotted-
dashed lines).
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rate from the observables used for estimation. This experiment allowed us to (i) assess the fit of

the preferred model in the absence of nominal rigidities; and (ii) assess whether the inability of

the baseline model to reproduce the key comovements of the margins of labor is sensitive to the

inclusion of nominal rigidities.

Rows “Baseline Model, flex price & wage” and “Preferred Model, flex price & wage” of Table

A.4 report our summarized results. Since the Bayes factor can only be employed to compare

models that have the same sets of observables, we cannot directly compare the fit of the preferred

model with flexible prices and wages (which abstracts from two observables) to our estimated

version. However, we can compare the estimated real versions of the baseline and preferred models,

which contain the same six observables. Rows “Baseline Model, flex price & wage” and “Preferred

Model, flex price & wage” show that even a real version of the baseline model implies the same

counterfactual comovements in the labor margins, while the real version of the preferred model

substantially improves the model fit relative to the baseline, as seen from the implied Bayes factor.

In addition, the absence of nominal rigidities fundamentally alters the variance decomposition

of the model. In particular, labor-market shocks become substantially more prominent in driving

fluctuations in the margins of labor. For instance, hours supply shocks and shocks to workers’

bargaining power in the preferred model now account for 91 percent of employment variation after

10 periods and 85 percent on impact. In contrast, in the model with nominal rigidities, these shocks

account for only 14 (15) percent on impact (after 10 periods). We view these results as indirectly

confirming that our results about the features needed to capture labor and macro comovements do

not hinge on the specific source of employment volatility—i.e., whether or not wage rigidities are

the key driver of extensive-margin dynamics.

Incorporating Separation Shocks and Data on Separation Rate

In this section, we consider the sensitivity of our results to including exogenous fluctuations in the

separation rate in our preferred model. First, row “Preferred Model, sep. shock, no h̄ shock” in

Table A.4 provides the results from the preferred model when the hours supply shock is replaced

with a shock to the separation rate. That is, we assume the separation probability λ is no longer

constant, but follows an exogenous AR(1) process:

λ̄t = ρλ̄λ̄t−1 + (1− ρλ̄)λ+ ǫλ̄t,
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where with ελ̄t
iid
∼ N

(
0, σ2

λ̄

)
.

Our original specification with the hours supply shock (row “Preferred Model”) implies a sub-

stantially greater fit than the separation shock specification (row “Preferred Model, sep. shock,

no h̄ shock”). In this case, the Bayes factor for the separation shock version is 66, well above the

threshold of Kass and Raftery (1995) for evidence in favor of our original model with the hours

supply shock. Moreover, the separation shock substantially increases the volatility of the variance

of total hours attributed to hours per worker and employment, as well as admitting a much larger

range of negative covariances between hours per worker and employment. These results reflect the

facts that the shock does not directly affect the intensive margin, and no data related to separation

is included in the estimation. In fact, when we compare the smoothed estimate of the estimated

separation shock to a measure of the separation rate (from Shimer’s quarterly employment exit

probability, available at https://sites.google.com/site/robertshimer/research/flows), we

find the two series have very low correlation.

Because of this mismatch, we have also conducted a second experiment and verified that adding

to our original estimation data on the separation margin together with the separation shock does not

alter our conclusions or messages. To do so, we constructed an observable series for the separation

rate from Shimer’s quarterly employment exit probability mentioned above. This series is linked

one-for-one to the exogenous separation probability shock λ̄t in the measurement equation of our

state-space model. We re-estimated both the baseline and preferred models with the addition

of this separation series, as well as the separation shock. Rows “Baseline Model, sep. shock &

separation data” and “Preferred Model, sep. shock & separation data” of Table A.4 report our

summarized results. As was the case with our original estimation, the preferred model is still

substantially preferred to the baseline, as documented by the Bayes factor comparison. Figure A.5

shows the differences in fit can be traced to the same issues with our original estimation, namely

the correlograms between hours per worker and consumption, hours per worker and output, and

hours per worker and employment on impact. Moreover, the shares of the variance of total hours

attributed to hours per worker, employment, and their covariance for the two specifications are

quite similar to our original estimates for the two models. All in all, while the employment exit

probability data helps inform the separation shock, the shock itself cannot account for the relative

movements of the intensive and extensive labor margins. The hours supply shock, along with

Jaimovich-Rebelo preferences and costly hours adjustment, accounts for the cyclical properties of

the labor margins.
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Figure 5. Correlograms from the data (solid lines) and 90 percent posterior intervals from 1) the benchmark
model augmented with exogenous separation shocks and separation data (black dashed lines) and 2) the
preferred model augmented with exogenous separation shocks and separation data (red dotted-dashed lines).

Wage Data

We document the robustness of our results to the wage observable. Using U.S. micro data, Haefke

et al. (2013) document that the wages of newly hired workers, unlike wages in ongoing relationships,

are volatile and procyclical. In addition, our baseline wage observable is not restricted to earnings,

as it includes employer contributions to employee-benefits (Justiniano et al., 2013). We address

these issues as follows. We estimate a version of the preferred model in which three measures of

the wage are simultaneously included in the observables. This strategy has been recently used

by several papers in the estimation literature (see for instance Boivin and Giannoni (2006), Gali

et al. (2011), and Justiniano et al. (2013)). The first is the measure described in Section 4 of

the main text, which is the BLS’ hourly compensation for the nonfarm business sector. The

second measure is the BLS’ average hourly earnings of production and nonsupervisory employees.

The third measure is the quality adjusted wage series of Haefke et al. (2013), which adjusts for

individual-level characteristics. We assume that each series represents an imperfect measure of the
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model wage according to:




Comp Waget

Earn Waget

Quality Waget


 =




Γ1

Γ2

Γ3


 (ŵt − ŵt−1 + ĝAt) +




e1t

e2t

e3t




where eit for i = 1, 2, 3 denote iid observation errors.5 Rows “Preferred Model, mix wage obs” and

“Baseline Model, mix wage obs” of Table A.4 display the total hours variance shares in this case.

Again, the preferred model has a better fit, with bands well encompassing the data.

Alternative Labor Market Variables and Subsample Analysis

We check whether our results are sensitive to the labor market measures used for the estimation.

We estimate the model using CPS labor market variables, as in Ramey (2012).6 In this case, neither

total hours nor employment are linearly detrended as it is less obvious the series exhibit a deter-

ministic trend; the two variables are demeaned. Parameter estimates in this case are comparable

to those in Table A.2. Bayes factors suggest strong preference for the preferred model as well.

As shown in Table A.4, the posterior bands for the model’s βs well-encompass their data counter-

parts. In addition, these results are robust to using the Smets and Wouters (2007) labor market

observables for estimation, which are commonly employed in the DSGE estimation literature, as

evidenced by the last rows of Table A.4.

Finally, our analysis of U.S. recoveries is robust to sub-sample estimation conditional on our

observables. This experiment allows us to address how structural change in parameter estimates (in

particular, those directly affecting labor market dynamics) contributes to the dynamics of hours and

employment in post-war U.S. data (the results are available upon request). As is common practice

in the literature, we split our original sample at the start of the so-called Great Moderation,

estimating from 1965:Q1 to 1983:Q4 and 1984:Q1 to 2007:Q4.

5The priors for the Γ’s are normal distributions centered at 1 with a standard deviation of 0.5. The priors for the
standard deviations of the wage observation errors are inverse gamma distributions with mean of 0.1 and standard
deviation of 1. Specifically, we use the median real wage of new hires corrected for fluctuations in all observable worker
characteristics from Haefke et al. (2013). This series is not available for the full sample period, but the Kalman filter
handles missing observations.

6See Appendix A for a description of the alternative labor market data.
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TABLE A.5: MODEL EQUATIONS, STATIONARY DEVIATIONS FROM TREND

(1) Lt = (1− λ)Lt−1 +Mt

(2)
β̄th̄th

ω
t

uCt
= (1− α)ϕt

(
uKtK̃t

ḡAtLtht

)α

(3) K̃t+1 = (1− δKt)
K̃t

ḡAt
+ p̄Kt IKt

[
1− ν

2

(
ḡAt

IKt

IKt−1
− gA

)2]

(4) rKt = ζKt[δK1 + δK2(uKt − 1)]

(5) ζKt = βEt

{
uCt+1

uCt

1
ḡAt+1

[rKt+1uKt+1 + (1− δKt+1) ζKt+1]
}

(6)
1 = ζKtp̄

K
t

[
1− ν

2

(
ḡAt

IKt

IKt−1
− gA

)2
− ν

(
ḡAt

IKt

IKt−1
− gA

)
ḡAt

IKt

IKt−1

]

+νβEt

[
uCt+1

uCt
ḡAt+1p̄

K
t+1ζKt+1

(
ḡAt+1

IKt+1

IKt
− gA

)(
IKt+1

IKt

)2]

(7) Mt = χ̄tU
ε
t V

1−ε
t

(8) κ
V τ
t

qt
= Sf

t

(9) ηwtS
f
t = (1− ηwt)S

w
t

(10) πwt = ḡAt
wt

wt−1
πCt

(11) 1 = βitEt

[
uCt+1

uCtḡAt+1

1
πCt+1

]

(12) it
i
=
(

it−1

i

)̺i
[(

1+πCt

1+πC

)̺π
(

Ygt

Yg

)̺Y
]1−̺i

(
Ygt

Ygt−1

)̺dY

ı̄it

(13) 1 = θ̄t

(θ̄t−1)Ξt
ϕt

(14)
(

uKtK̃t

ḡAt

)α
(Ltht)

1−α

[
1− ν

2

(
πCtπ

ιp−1
C π

−ιp
Ct−1 − 1

)2]
= Ct + IKt + κtVt +Gt

(15) rKt = ϕtα
(

uKtK̃t

ḡAtLtht

)α−1

(D.1) Y g
t = Ct+IKt+Gt

C̃t+ĨKt+Gt

(D.2) Ut = 1− (1− λ)Lt−1

(D.3) Ξt ≡ 1− φp

2

(
πCtπ

−ιp
Ct−1π

ιp−1
C − 1

)2
+ φp

θ̄t−1





π
ιp−1
C

(
πCtπ

−ιp
Ct−1π

ιp−1
C − 1

)
πt (ω)π

−ιp
Ct−1

−Et

[
β uCt+1

uCt

(
πCt+1π

−ιp
Ct π

ιp−1
C − 1

)
πCt+1π

−ιp
Ct

Y C
t+1

Y C
t

]




(D.4) Sf
t = (1− α)ϕt

(
uKtK̃t

ḡAtLtht

)α
ht − wtht −

φw

2

(
πwtπ

ιw−1
C π−ιw

Ct−1 − ḡA
)2

+ (1− λ) βEt

(
uCt+1

uCt
Sf
t+1

)

(D.5) Sw
t = wtht − b−

β̄th̄th
1+ω
t

(1+ω)uCt
+ (1− λ)βEt

[
uCt+1

uCt
Sw
t+1

(
1− Mt+1

Ut+1

)]

(D.6) uCt = β̄t
1

(

Ct−hC
Ct−1

ḡAt

) − hCβEt

[
β̄t+1

1
(Ct+1ḡAt+1−hCCt)

]

(D.7) qt =
Mt

Vt

(D.8) δKt ≡ δK0 + δK1(uKt − 1) + (δK2/2) (uKt − 1)2

(D.9) κt = κV τ
t / (1 + τ)

(D.10) ηwt =
η̄tht

η̄tht+(η̄t−1)









−ht − φw ḡAt

(
πwtπ

ιw−1
C π−ιw

Ct−1 − ḡA
) π

ιw−1

C
π
−ιw
Ct−1

πCt

wt−1

+φw (1− λ) βEt

[
uCt+1

uCt

(
πwt+1π

ιw−1
C π−ιw

Ct − ḡA
) πwt+1π

ιw−1

C
π
−ιw
Ct

wt

]








Note: C̃tand ĨKt in equation (D.1) are consumption and investment observed when φw = φp = εη̄t = εθ̄t = 0.

Variable without a time subscript denotes steady-state values.
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TABLE A.6: ALTERNATIVE MODEL, STATIONARY DEVIATIONS FROM TREND, NEW EQUATIONS

(2’)
Ψ−1

t β̄th̄th
ω
t Xt

uCt
= (1− α)ϕt

(
Kt

ḡAth̃tLt

)α
∆h̃t.

(14’)
(

uKtK̃t

ḡAt

)α (
Lth̃t

)1−α
[
1− ν

2

(
πCtπ

ιp−1
C π

−ιp
Ct−1 − 1

)2]
= Ct + IKt + κtVt +Gt

(15’) rKt = ϕtα
(

uKtK̃t

ḡAtLth̃t

)α−1

(D.4’) Sf
t = (1− α)ϕt

(
uKtK̃t

ḡAth̃tLt

)α
h̃t − wtht −

φw

2

(
πwtπ

1−ιw
C π−ιw

Ct−1 − gA
)2

+ (1− λ) βEt

(
uCt+1

uCt
Sf
t+1

)

(D.5’) Sw
t = wtht − b−

Ψ−1

t β̄th̄th
1+ω
t Xt

(1+ω)uCt
+ (1− λ)βEt

[
uCt+1

uCt
Sw
t+1

(
1− Mt+1

Ut+1

)]

(D.6’) uCt =


 β̄tΨ

−1
t + γµt

(
Ct − hC

Ct−1

ḡAt

)γ−1

X1−γ
t−1 ḡ

γ−1
At − βhCEt

[
β̄t+1 (Ψt+1ḡAt+1)

−1
]

−γβhCEt

[
µt+1

ḡAt+1
(Ct+1ḡAt+1 − hCCt)

γ−1
X1−γ

t

]



(D.11) µt = −β̄tΨ
−1
t Lth̄t

h
1+ω
t

1+ω
+ (1 − γ)βEt

{
µt+1

ḡAt+1
(Ct+1ḡAt+1 − hCCt)

γ
X̃−γ

t

}

(D.12) Ψt = Ct − hC
Ct−1

ḡAt
−

h̄tLth
1+ω
t Xt

1+ω

(D.13) Xt =
(
Ct − hC

Ct−1

ḡAt

)γ (
Xt−1

ḡAt

)1−γ

(D.14) h̃t = ht

[
1− φh

2 (ht − h)
2
]

(D.15) ∆h̃t =
h̃t

ht
− φhht (ht − h)

Note: Other equations are unchanged relative to Table A.5.
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TABLE A.7: LOG-LINEARIZED MODEL EQUATIONS

(1) LL̂t = L(1− λ)L̂t−1 +MM̂t

(2) ˆ̄βt +
ˆ̄ht + ωĥt − ûCt = ϕ̂t + α

(
ûKt +

ˆ̃Kt − ĝAt − L̂t − ĥt

)

(3) ˆ̃Kt+1 =
(
1−δK0

gA

)
( ˆ̃Kt − ĝAt)−

(
δK0

gA

)
δ̂Kt +

(
1− 1−δK0

gA

)
[ ̂̄P

K

t + ÎKt]

(4) r̂Kt = ζ̂Kt +
ς

1−ς
ûKt

(5) ζ̂Kt = EtûCt+1 − ûCt − EtĝAt+1 +
β
gA

rK (Etr̂Kt+1 + EtûKt+1) +
β
gA

(1− δK0)Etζ̂Kt+1 −
β
gA

δK1EtûKt+1

(6) (1 + β)Îkt −
1

g2
A
ν

(
ζ̂Kt + ˆ̄pKt

)
− βEtÎKt+1 + ĝAt − βEtĝAt+1 = ÎKt−1

(7) M̂t = ˆ̄χt + εÛt + (1− ε)V̂t

(8) τV̂t−q̂t = Ŝf
t

(9) η̂wt + Ŝf
t = − ηw

1−ηw
η̂wt + Ŝw

t

(10) π̂wt = ĝAt + ŵt − ŵt−1 + π̂Ct

(11) ı̂t + EtûCt+1 − ûCt − EtĝAt+1 − Etπ̂Ct+1 = 0

(12) ı̂t = ̺i ı̂t−1 + (1 − ̺i)̺ππ̂Ct + (1− ̺i)̺Y Ŷgt + ̺dY

(
Ŷgt − Ŷgt−1

)
+ ̂̄ıt

(13) 0 = − 1
θ̄−1
̂̄θt − Ξ̂t + ϕ̂t

(14) α(ûKt +
ˆ̃Kt−1 − ĝAt) + (1− α)(L̂t + ĥt) =

C
Y
Ĉt +

IK
Y
ÎKt +

κV 1+τ

Y (1+τ)

(
κ̂t + V̂t

)
+ Ḡ

Y
ˆ̄Gt

(15) r̂Kt = ϕ̂t + (α− 1)
(
ûKt +

ˆ̃Kt − ĝAt − L̂t − ĥt

)

(D.1) Ŷgt = C
(
Ĉt −

̂̃Ct

)
+ IK

(
ÎKt −

̂̃IKt

)
+GĜt

(D.2) UÛt = −(1− λ)LL̂t−1

(D.3) Ξ̂t = − 1
θ̄−1

[
φp
(
π̂pt − ιp ˆ̃πpt−1

)
− φpβ

(
Etπ̂pt+1 − ιp ˆ̃πpt

)]

(D.4) Sf
t Ŝ

f
t =


 (1− α)ϕ

(
uKK̃
ḡALh

)α
h
[
α
(
ûKt +

ˆ̃Kt − ĝAt − L̂t

)
+(1− α) ĥt

]

−wh(ŵt + ĥt) + β(1 − λ)Sf
[
EtûCt+1 − ûCt + EtŜ

f
t+1

]



(D.5) SwŜw
t =

[
wh(ŵt + ĥt)−

h̄h1+ω

(1+ω)uC
[̂̄ht +

̂̄βt + (1 + ω)ĥt − ûCt]

+(1− λ)βSw
(
1− M

U

)
(EtûCt+1 − ûCt + EtŜ

w
t+1)− (1− λ)βSw M

U
(EtM̂t+1 − EtÛt+1)

]

(D.6) ûCt =

[
gAβhC

(gA−βhC)(gA−hC)EtĈt+1 −
g2
A+βh2

C

(gA−βhC)(gA−hC) Ĉt

+ gAhC

(gA−βhC)(gA−hC) Ĉt−1 +
gAβhCρgA

−hCgA

(gA−βhC)(gA−hC) ĝAt +
gA−βhCρb

gA−βhC

ˆ̄βt

]

(D.7) q̂t = M̂t − V̂t

(D.8) δ̂Kt ≡
δK1

δK0
ûKt

(D.9) κ̂t = τV̂t

(D.10) η̂wt = ̂̄ηt + ĥt −
1
h

{
̂̄ηthη̄ + ĥthη̄ + (1− η̄)

[
−hĥt − φwgA

πC

w
(π̂wt − ιwπ̃wt)

+φw (1− λ) βEt

(
πwπ

−1

C

w
(π̂wt+1 − ιwπ̃wt+1)

)
]}

Note: C̃tand ĨKt in equation (D.1) are consumption and investment observed when φw = φp = εη̄t = εθ̄t = 0.

Variables without a time subscript denote steady-state values; ς/ (1− ς) = δK2/δK1.
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TABLE A.8: ALTERNATIVE MODEL, LOG-LINEARIZED EQUATIONS

(2’) ̂̄βt +
̂̄ht − Ψ̂t + ωĥt + X̂t − ûCt = ϕ̂t + α

(
ûKt +

ˆ̃Kt − ĝAt − L̂t−
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+ ∆̂h̃t

(14’) α(ûKt +
ˆ̃Kt−1 − ĝAt) + (1− α)(L̂t +
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C
Y
Ĉt +

IK
Y
ÎKt +

κV 1+τ

Y (1+τ)

(
κ̂t + V̂t

)
+ Ḡ

Y
ˆ̄Gt

(15’) r̂Kt = ϕ̂t + (α− 1)
(
ûKt +

ˆ̃Kt − ĝAt − L̂t−
ˆ̃
ht

)

(D.4’) Sf
t Ŝ

f
t =
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uKK̃
ḡALh

)α
h
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α
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ûKt +

ˆ̃Kt − ĝAt − L̂t
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−wh(ŵt + ĥt) + β(1− λ)Sf
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EtûCt+1 − ûCt + EtŜ
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t =
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]

(D.6’) ûCtuC =
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

Ψ−1
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)
+ γµ

[
C
(
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1− hC
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Ĉt−1 − ĝAt
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−σ Et
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A [C (gA − hC)]

γ−1
X1−γ

(
Etµ̂t+1 − EtgAt+1 + (1− γ) X̂t

)

− (γ − 1)γβhC µ̃g
−1
A [C (gA − hC)]

γ−2
X1−γ

(
EtĈt+1CgA + EtĝAt+1CgA − hCĈtC
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


(D.11) µ̂tµ =


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−Ψ−1Lh1+ω

1+ω
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[
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C
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Ĉt−1 − ĝAt

)
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1+ω
X
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)

(D.13) X̂tX =




γ
[
C
(
1− hC

gA
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X
gA

)1−γ [
ĈtC − hC

C
gA

(
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)]

+(1− γ)
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C
(
1− hC

gAt

)]γ (
X
gA

)1−γ (
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)




(D.14) h̃t = ĥt

(D.15) ∆h̃∆̂h̃t =
(
ˆ̃
ht − ĥt

)
− φhh

2ĥt

Note: Other equations are unchanged relative to Table A.7.
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